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The field radiated by an acoustic monopole in the presence of an infinite mem- 
brane, or plate, is studied, with emphasis on the case when fluid loading effects 
are small and when a free wave in the surface has supersonic phase speed relative 
to the fluid. Coupling between fluid and surface is then specified by a Mach angle 
S,, and by a fluid loading parameter 8,  with B 4 1. Asymptotic expressions for 
the field are derived which are uniform in the observation angle 8, measured 
from the surface. Previous descriptions have suggested the formation of a 
strong two-dimensional beaming effect along the surface of the Mach cone 
8 = OM. Here it is shown that this effect is a spurious consequence of non- 
uniform asymptotics. A beam is indeed formed, and persists without attenuation 
or distortion to large distances k,R N c2. However, the beam amplitude is 
small compared with that of the three-dimensional reflected field, while at 
distances k,R B c2 only the reflected wave survives. Some interesting features 
of the reflexion coefficient and of the field near to the membrane are also discussed. 
In particular, it  is shown that the pressure field generated by a subsonic surface 
wave is also confined to a conical zone, the transition across the generators of 
the cone being described by Fresnel functions of a familiar kind. 

1. Introduction 
Problems involving the coupled motion of a wave-bearing surface and a 

compressible fluid arise frequently. In  some cases it is necessary to account for 
the modification of the field radiated by acoustic sources due to the induced 
surface waves, while in others the influence of fluid loading on the parameters 
describing the surface response is required. We shall consider here the fist 
aspect of the problem in the very simplest case, that in which the surface is 
formed by an infinite homogeneous membrane. The essential features are 
demonstrated most clearly in this context, and the extension to the more 
realistic case of a thin elastic plate is easily made. Standing-wave modes in the 
surface are of course excluded by the infinite model, but any attempt to include 
effects due to finiteness or inhomogeneity of the surface appears premature until 
a proper description of the simplest case has been achieved. 

Problems of the kind considered here are in no way novel, and have been 
treated in some detail in the recent book by Morse & Ingard (1968). Analysis is 
given there of the motion of a coupled fluid-plate system when the plate is 
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either driven by a line force, or irradiated by a point source or plane wave 
acoustic field. However, the mathematics used is invalid in the region of the 
field where the most interesting phenomena occur, significance being attached, 
in particular, to an acoustic beaming generated by a supersonic surface wave, 
although the analysis cannot deal with this effect. Moreover, the beam described 
by Morse & Ingard propagates a small, though finite, amount of energy to in- 
finity. This contradicts the reflexion principle of Ffowcs Williams (1965)) that 
the acoustic power delivered by a source cannot be more than doubled by the 
presence of an infinite plane homogeneous surface. The persistence of the beam 
to infinity and the apparent power excess merely reflect a non-uniformity in 
the asymptotic methods used, as we shall see later. 

The present problem appears to have been first discussed by Lamb (1957). 
His treatment does not differ essentially from that of Morse & Ingard, and is, 
in fact, less accurate in that it does not include all possible free modes of the 
coupled system. Feit (1966) considers a similar problem, that of a thick elastic 
plate driven by a point force and immersed in fluid. His argument for the 
relevance of this problem is that, when frequencies are sufficiently high that 
supersonic waves can propagate in a plate, the usual assumptions leading to the 
thin-plate equation cannot be made. There is no reason to doubt the validity 
of this argument, but Feit’s work does not seem to settle the general problem, 
as he was concerned mainly with aspects of the reflected field. The structure of 
the pressure fields generated by subsonic and supersonic plate waves was not 
dealt with in that work. The radiation from a thick elastic plate under line-force 
excitation is also the subject of a long paper by Lowenthal (1964). Lowenthal 
gives an extensive discussion of supersonic surface waves (which, in the electro- 
magnetic analogue, Marcuvitz (1956) has termed ‘leaky waves’), but does not 
show how the conical beam which they generate must ultimately decay. Not 
surprisingly, his statements about the types of free mode which will feature in 
the solution as the values of plate and fluid parameters are varied are incomplete, 
for in the case of the elastic plate these modes are determined by the roots of a 
quintic. Here we adopt a much less ambitious approach and consider the 
simpler case of a membrane for which the free modes are determined by the 
roots of a cubic (equation (3.2)), allowing a complete description of the nature 
of these modes. 

The beaming effect mentioned earlier might be of great practical importance, 
if it could be realized, and warrants a complete re-examination of the problem 
with a view to determining the precise form of the field along the beam direction. 
We shall see that a beam can indeed be formed, and that it will persist over a 
great distance if fluid loading effects are small. At still greater distances, how- 
ever, the beam spreads, and we are left simply with the reflected field. Provided 
the source lies closer than a wavelength to the membrane, the total field in the 
beaming direction then vanishes at  sufficiently great distances since the reflexion 
coefficient for that direction is equal to - 1. Thus the two-dimensional beaming 
along a conical surface disappears with increasing distance and in the end the 
cone becomes a null surface of the total field. 

The paper ends with a discussion of properties of the reflexion coefficient 
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and of the field generated by subsonic surface waves. A feaure which seemsnot 
to have been previously noticed in the acoustic context is that the pressure field 
so induced is confined more or less abruptly beneath the surface of a certain 
cone. This cone acts as a shadow boundary for subsonic waves in the same 
manner as the Mach cone for supersonic waves. 

2. Formulation 
An infinite membrane lies in the plane x3 = 0, with fluid on one side, x3 > 0 

say. A time factor exp ( -  iwt) is assumed, with w > 0,  and the coupled motion 
of membrane and fluid is generated by a monopole source at (0, 0,h).  The acoustic 
wave-number w/co is denoted by k,, while k, is the free wave-number in the 
membrane in a vacuum. The sound speed in the fluid is c,, and c, = (T/m)* is 
the wave speed in the membrane, which has tension T and specific mass m. 

The incident pressure field will be taken as 

A Hankel transform 

may be evaluated from tables (Erdhlyi et al. 1954), to give 

Here, for real values of s, y(s) is defined by 

positive values of the radicals being implied. Subsequently we shall need to 
regard s as a complex variable, in which case y(s) is defined as that branch of 
(sZ-k:)* which reduces to (2.4) on the real axis, branch cuts being taken from 
+ k, to infinity in the first quadrant and from - k, to infinity in the third. 

Now let p ( x ,  x3) denote the scattered pressure, p(s ,  2,) its Hankel transform. 
Then the Helmholtz equation 

(V2 + %)p(x ,  x3) = 0 

and the condition that p(s ,  x3) shall either vanish, or represent an outgoing wave, 
as x, -+ + a, are satisfied by 
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Next, let y(x) be the membrane displacement in the positive x3 direction. Then 
the kinematic condition on the membrane is 

a 
--(@+@,)(s, 8x3 0) = -pw2g(s), 

and with (2.3) and (2.5) gives 

exp ( - yh) - yiW, 0) = pw2y”(s), 

p being the fluid density. The dynamic condition 

(TV! + mu2) y ( 4  = Po (x, 0) +P@, 0) 

in which VZ, denotes the surface Laplacian, gives 

(-Ts2+mw2)y”(s) = y-lexp(-yh)+@(s, 0). (2.7) 

Writing p = p/m, k$ = mw2/T, a particular solution for surface pressure is 
found by eliminating y”(s) from (2.6) and (2.7) to yield 

from which the radiated pressure follows as 

Regarded as an integral in the complex s plane, the path of integration must 
avoid the branch cut in the first quadrant by means of an indentation below the 
point s = k,. Similar indentations below any poles of @(s, 0 )  on the positive real 
s axis will be found to yield a pressure field consisting of outgoing waves only as 
1x1 +co. Then it will be neither necessary, nor possible, to add to (2.9) any 
regular solution of the homogeneous problem, for any such solution would 
contain standing waves violating the radiation condition. 

We evaluate the integral (2.9) by first writing 

ZJ,(SX) = H ~ ’ ’ ( S X )  + H b 2 ’ ( ~ x ) .  

It is easy to show that there are no poles of the integral in the fourth quadrant, 
a.nd the path for the integral involving Hb2’ (sx) may therefore be deformed directly 
onto the negative imaginary axis. Use of the identity Hb2’(it) = - H f ’ (  -it), for 
real t ,  allows that integral to be expressed as one involving Hbl)(sx) taken along 
the positive imaginary axis, with the result that 

. n  

p(x, zg) = - P(s,  0) H$,’-’(sx) exp ( - yx3) s ds, 
2 c  ‘J (2.10) 

where the path C runs along the axes from ico through 0 to + co, with indentations 
below singularities in (0, 00) as discussed above. 
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The simplest way of proceeding now is to use the elegant representation 
described in detail by Clemmow (1966), mapping the cut s plane on to a strip of 
the 0 = a + ip plane according to 

s = k,cosO (0 < CL < n). (2.11) 

The value of y in the strip is -ik,sin@, and figure 1 shows the transformed 
contour C‘. It is possible to persevere with the s plane, and despite the increased 
algebraic complexity it is instructive to do so, though we defer discussion of this 
until $ 5 .  

FIGURE 1. The 0 = a +i/3 plane, showing the path C’ (ABOD) of integration, and the path 
I? of steepest descent. The path C‘ is to be regarded as indented to the right of any sub- 
sonic pole, such poles lying on the line OD. The points ABOD correspond to the points 
s = i co, 0, k,, and + m respectively. 

Let (R,, 0) be polar co-ordinates based on the image point (0, 0, - h) so that 
x = R, cos 8, x3 + h = R, sin 8,O < 8 < irr. Then we have 

p(R,, 8) = -@‘co/c,exp [ik,R,cos (0 - e)] cosOlr’(0)dO. 

where 

x H f ) ( k , R ,  COB 0 cos 0) exp ( - ik,R, cos 0 cos 0). (2.12) 
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Now the saddle-point of the function ik, cos (0 - 8) is at  0 = 8, and the lines of 
steepest ascent and descent through that point are given by 

COS(a-t9)cosh/3= 1. (2.13) 

The path I? of steepest descent is that branch of (2.13) which behaves like 
a - 8 = - p near 0 = 8, and we may deform the path C' onto I?, there being no 
contribution to the integral, from arcs at infinity linking C' to I?. The deformation 
does require a knowledge of the poles of the integrand, and further development 
of the integral (2.12) is therefore now postponed until 94. 

3. Free modes of the coupled system 
The poles of the integrand of (2.12) are the values of 0 for which 

(cos2 0 - kL/k$) i sin 0 +pkL/k! = 0, (3.1) 

and these values of 0 correspond in the s plane to the wave-numbers of the 
possible free oscillations of the coupled system with surface deflexion exp (iss,), 
with a suitable choice of axes. Instead of solving (3.1) directly, we can solve for 
the values of y = - ik, sin 0, noting that an admissible y must satisfy Im y < 0 
everywhere in 0 < a < n, while Rey 2 0 on (a = 0, /3 > 0) and on (a = n, p < 0). 
We have then 

y"(k;-kk)y-pk: = 0, (3.2) 

an equation which can be solved by the usual methods. The explicit solutions 
are cumbersome and need not be quoted here, though they are useful in con- 
firming the general arguments which follow. 

Note that the roots of (3.2) have z0ro sum and positive product. Consequently, 
if (3.2) has three real roots, two must be negative and one positive, while if it 
has only one real root, that root must be positive and the two complex roots 
must have negative real parts. Which of these situations obtains is determined 
by whether the discriminant 

A = p2k& - (kk - (3.3) 

is negative or positive, respectively. 
Suppose that A < 0. Then the one real positive root for y arises from values 

of 0 on (a = 0, p > 0) or (a = n, p < 0) and clearly, only the first of these is 
relevant, as the second can never be crossed in the deformation from C' to I?. 
The two real negative values of y are likewise irrelevant, for they arise from 
poles in the 0 plane lying on (a = n, p > 0), or (a = 0, p < 0). In  this case then, 
there is only one pole of interest, 0 = 0, say, with a, = 0, p,. > 0. In  the s plane, 
this value of 0 corresponds to a pole s = k, on the positive real axis, with 
kr > k,. Indentation of the original contour C below E ,  implies indentation of 
C' to the right of Or, and therefore the pole at 0, may or may not be crossed in 
the deformation of C' on to I?, depending upon the observation angle 8. This is 
a point to which we shall return in $5 .  We note that the free mode represented 
by this pole takes the form of a subsonic surface wave, travelling without 
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attenuation over the membrane, and generating a near-field pressure wave 
confined to the layer (k2, - k:)$ x3 5 1.  

Suppose next that A > 0. Then there is one real positive solution of (3.2), 
and a complex conjugate pair with negative real part. The real positive solution 
for y gives rise to a single relevant pole 0, say, with properties identical with 
those of 0, above. That one of the complex pair with Im y > 0 is inadmissible, 
is noted earlier in this section. This leaves us with the third root for y, which 
arises from a pair of values of 0,0, and n - 0, say, and it is easy to see that 
Re 0, < in, Im 0, < 0. The pole at  n- 0, is therefore again irrelevant, but that 
at  0, may be captured in the deformation from C' to I? depending upon the 
values of 8, p / k o  and km/ko. Also, the pole a.t 0, may represent a free mode in 
which the phase velocity of surface waves is either subsonic or supersonic 
relative to the sound speed c,-i.e. the image wave-number kf in the s plane may 
have real part greater than or less than k,, depending upon the ratios km/ko, ,u/ko. 
However, it is not hard to see that any pole of the 0, kind which is crossed in the 
path deformation is necessarily of the supersonic type. The pressure field in the 
resulting free mode has the structure exp [ikfx - y(kf )z3] ,  where we have 

Rek, < k,, Imkf > 0, Re y(k,) < 0, Im y ( k f )  < 0. 

The wave amplitude decays through radiation loss as the wave propagates 
supersonically along the x1 axis, but increases exponentially with increase of x, 
at any fixed x1 location. This is because one can regard a value of the pressure as 
generated at  a point on the membrane and then propagated unmodified along 
the characteristic (Mach) direction dx3 = dxl tan 8, through that point, where 

= cos-l (Re kf /kJ. Consequently, increasing x, is equivalent to displacing the 
emission point backwards over the membrane in the direction of exponentially 
increasing surface deflexion. The corresponding waves of this type in electro- 
magnetic propagation have been termed 'leaky waves ' (Marcuvitz 1-956). 

Thus, in the case A > 0 there are two possibilities. In  both we have a pole of 
the 0, type, giving rise to a subsonic surface wave. In  addition, a pole of the 0, 
type may be captured in deforming C' on to I' and this pole will always give rise 
to a supersonic surface wave, but the condition under which the pole will be 
captured is too complicated to be worth setting down here. 

Note that the condition for one or two poles which can possibly be captured 
is not simply that ko < k,,, or k, > k, respectively, as stated by Morse & Ingard 
(1968, p. 691). The condition on A reduces to these simpler conditions only when 
plk, and p/km are small compared with unity, so that fluid loading effects are 
small. As a counter example to the conditions of Morse & Ingard, take any 
fixed ratio k,/km, write u = (pkk)), and let p/k,-+co. Then A > 0, we have a 
pole of the 0, variety, and also one a t  

0, = +n - i In ( 2u/k,), 

which can never be captured in the deformation of C' on to I?. Whether the ratio 
ko/km is larger, or smaller, than unityis irrelevant; in both cases only the 0 s  
pole makes any contribution. 
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Analytical approximations to the poles can easily be obtained for any $xed 
value of ko/kn, when the fluid loading parameter E = p / k ,  is either small or large 
(the value of E being ementially the ratio of the inertia of the fluid within an 
acoustic wavelength of the surface to the inertia of the membrane itself). Thus 
if E < 1 and km > k,, then A < 0, and the pole 0, and associated wave-number 
kr are given by 

0, = i cosh-l(kr/ko), 1 

(3.4) 

If E 9 1, then A > 0 regardless of the value of k,/km but the pole at  0, given 
above has already been seen to play no part. The other pole is of the subsonic 
kind and is given by 

Finally, consider the case E < 1, k, > km, and introduce a Mach angle through 
the relation km = k, cos 0,. A pole of both the subsonic and supersonic kind now 
exists, and both are capable of making a contribution to the pressure field for 
certain ranges of the observation angle 0. The subsonic pole is given by 

1 0, = i cosh-'(k,/k,), 

?cy = k , ( 1 + 4 ~ 2 ~ 0 t 4 6 ~ ) ,  

while for the supersonic pole, 

1 0, = 0, - + i ~  cot 0,, cosec 0,, 

kf = - ik, sin 0, - +k, cot2 elV,. (3.7) 

This case will be examined in detail in the next section, the analysis then being 
sufficiently simple to allow the general features to emerge very clearly. A point 
which should, however, be emphasized, is that the approximations given above 
are valid for any fixed value of k,/km as E +  0 or E+OO, and the approximations 
are not uniformly valid in the ratio k,/km. 

4. The radiated field 
We return now to the evaluation of (2.12) taking E < 1 and k, > km. Further, 

we entirely ignore the subsonic pole 0, for the present. Then it follows from the 
linear form of (2.13) near 0 = 0 and the smallness of E that the pole at  0, (see 3.7) 
will be crossed when C' is deformed on to I? provided 
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The residue contribution is easily found to O(E),  after expansion of the Hankel 
function for koR2 cos 0, COB I9 $ 1, in the form 

If the presence of 8 in the Heaviside function is neglected (though it should 
not be), this term represents the beaming action along the surface of the Mach 
cone 8 = e,,, as described by Morse & Ingard (1968). On that cone, the pressure 
has the two-dimensional structure R,!z exp (ikoR2) with no exponential decay, 
and the beam continues to infinity. However, we shall see that (4.2) is not the 
only contribution to a beam of this kind, and that the field (4.2) is annihilated at 
sufficiently large distances. 

Considering now the integral along I?, it can be shown that 

for all 0 on I?. If, therefore, we take koR2cos8(1 -sinB)B $ 1, the argument of 
the Hankel function will be uniformly large on I?, and the function may be 
replaced by its asymptotic form to give a field 

The simple method of steepest descent does not give an asymptotic estimate 
of this integral which is uniformly valid for values of 0 near 0,. This fact was 
noted by Lamb (1957)) though he did not make the appropriate correction, and 
it arises because the pole at  0, coalesces with the saddle-point as e+O. One 
method of ensuring a uniformly valid approximation is given by Jones (1964, 
p. 689). We have to evaluate an integral of the form 

~rexp[ilc0R2cos (@-@I G(O)dO, 

where G ( 0 )  has a simple pole at 0,. We therefore isolate the singularity explicitly 
and approximate the remainder of G(0)  by its value at the saddle-point. Then 
the usual approximation to the phase and path of integration leads to an integral 
of the form 

dP, 
+ m  exp ( - ko R2P2) s -m s-of+(i-l)p 

and this can be evaluated in terms of Fresnel or error functions, these providing 
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the natural mathematical expression for the necessary smoothing of the dis- 
continuous field p f  (R2, 6) .  

Defining 

we find that if Imy > 0 (i.e. if (4.1) is satisfied) then 

p(R, 0) = pf(Rz ,  e)+exp[@] (nk0/2R,)~R,(B-Of)exp[ik,R2-72k,R2] 
x erfc [-i~,@~R,)4], (4.6) 

while if the reverse of (4.1) holds, Im y < 0, then 

p(R2, 8 )  = -exp[$rri] (7rk0/2R2)4R,(B-Of)exp [ikoR,-y2koR2] 

xerfc [+i7(koR2)*]. (4.7) 

It is easy to see that the field defined by (4.6) and (4.7) is continuous across the 
surface Imy = 0. Note that this surface is displaced slightly below the Mach 
cone 0 = 0, because of the small, though finite, fluid loading. Expressions 
apparently differing from those above may be derived by either of the methods 
given by Clemmow (1966, p. 57) in which the pole is isolated in somewhat 
different ways, but all such expressions are asymptotically equivalent to those 
given here. 

Suppose now that Iyl (koR,)* B 1 (in addition to the previous requirements, 
which amount to koR, 9 1 provided 8 is not near to in). Then we may use the 
asymptotic form 

erfc z - n-4 2-1 exp [ - 221 

as z+co, since the error functions in both (4.6) and (4.7) have positive real 
parts of their respective arguments. Above the cone Imy = 0, i.e. for 

pf is zero and we have simply from (4.7) 

P(R,, 4 - R ,  exp [ikoR2lP2. 

This holds when either e-O& = O(s)  or smaller and koR2 9 E-2, or when 
O-S& = O(1) and k,R, 9 1. 

Under the same conditions we have from (4.6) 

P(R2,e) - Pf + R ,  exp CikOR,l/R, 

for values of 8 less than S&. In  the case when 8 - O& = O(s) or smaller and 
k,R2 9 B-,, pf is negligible. For the minimum possible value of sin (0,- 6') is 
sin (+ecotOM/sin8,) and therefore from (4.2) p f  is of order exp [ - ~ 2 k , R ~ ] .  In  
the case when 0 - B;M = O( I), pf is of order exp [ - skoR2], and is negligible when 
k,R, 9 e-1. 
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In  summary then we have 

PWZ, 8)  R, exp [ikoR,l/R, ( 4 8  
for I9 near to 8 h  and k, R, B E-,, or for 8 9 8& and k, R, 1, or for 8 < 8& and 
k,R, & c-l. Equation (4.8) is just a statement of the reflexion principle (Ffowcs 
Williams 1965), R, being the reflexion coefficient for a plane wave whose 
propagation vector makes an angle 8 with the surface. The reflexion principle 
holds well above the Mach cone 8 = 8& at distances koR, & 1,  well below the 
Mach cone at greater distances k, R, 9 c-l, and near the Mach cone provided the 
distance is very great, k, R, & c2. We note that I R, I = 1 for all angles 8, and so 
the acoustic power radiated in any direction cannot be increased over the free 
field value by more than a factor of four through the presence of the membrane. 

This leaves us with one region still to consider, that in which 18- 8&l = O(E)  
or smaller and 1 < k,R, < c-,. Here the field is given by (4.6) or (4.7) as 

p(R,,  8) - (7rik0/2R2)*& (cot 8,/sin 8,) exp [ik,R,], (4.9) 

and takes the form of a conical beam with a two-dimensional structure. Note 
that (4.9) is not identical with (4.2), and that the residue contribution (4.2) 
given by Morse & Ingard (1968) fails to describe the beam correctly even where 
the beam does exist. Moreover, it is not true that the beam carries even a 
significant fraction of the energy. For the ratio of amplitude along the beam to 
that of the reflected field which dominates elsewhere is of order s(k,R,)*, and 
this is small throughout the range of R, for which the beam persists. Conse- 
quently, little emphasis should be placed on the extremely pronounced 
directivity pattern which would result if the beam were able to continue to 
infinity without distortion. 

The features discussed above, of the field generated when circumstances allow 
propagation of supersonic elastic waves in the surface, are sharply defined 
when fluid loading effects are small. If those effects are not small, but conditions 
still such as to permit supersonic surface waves, the pole at 0, will still lie close 
to the path I? of steepest descent for a certain value of 8 but will not tend to 
coalesce with the saddle-point. The sharpness and persistence of the beaming 
effect will then not be as pronounced, but otherwise the conditions reached 
above will remain qualitatively valid and require no further discussion. 

5. Subsonic surface waves 
Suppose now that the only pole of the integral of (2.12) is one of the subsonic 

type, denoted by 0,. or 0, in $ 3  and corresponding to a free mode with wave- 
number K say. This pole will be captured in the deformation from C’ to r if 

8 < cos-l(k,/K), 

giving rise to a residue contribution 

pr(x, x3) = ~ 7 ~ i H ~ l ) ( ~ x ) e x p [ - ( ~ 2 - k ~ ) ~ ( x ~ + h . ) ]  
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The steepest descent integral can be evaluated asymptotically as before, and 
the results are identical with those of (4.6) and (4.7), with (5.1) replacing the 
expression (4.2) for pf and with 7 now defined as i[i(h-8)-(h+8)] where 
K = k,coshh. The argument of the error functions is now uniformly large for 
all 8 not near to i7)- provided k,R, 9 1, and the error functions may be replaced 
by their asymptotic forms to give 

P - Pr + R* exp [i~,R,I/R,. 
R, is defined formally in (4.77, but is written more naturally in the form 

(Tki cos2 8 - muz) + ipc,w cosec 8 
R* = [ (Tk; cos28 - r n d )  - ipcoo cosec 8 (5.3) 

which allows straightforward generalization. 
In  this case of subsonic surface wave, the rather curious angular cut-off is 

maintained to arbitrarily large distances. This effect is well-known in electro- 
magnetic propagation (Clemmow 1966, p. 117) but appears to have been over- 
looked in the acoustic case treated by Lamb (1957) and Morse & Ingard (1968). 
Since Morse & Ingard work entirely in the s plane it is illuminating to resolve 
the discrepancy between their result and equations (5.1) and (5 .2 ) .  

Consider again equation (2.10). Morse & Ingard take branch cuts from k, 
to k, + im and from - k, to - k, - ico, in which case Re y > 0 everywhere at 
infinity and the contour C can be deformed on to the edges of the branch cut 
from k, with capture of all poles in the first quadrant. The branch cut is then 
deformed to pass through the saddle-point s = k, cos 8 a t  an angle $7)- with the 
positive cr axis (s = (T + i ~ ) ,  so that it follows the path of steepest descent A in 
the vicinity of the saddle-point. Such a deformation clearly cannot affect any 
subsonic poles, which all lie to the right of k,. Of course, supersonic poles may be 
affected thereby, and it is a straightforward matter to recover the results of $ 4  
by this method. However, it is essential that the path C be deformed on to the 
whole of A, and not just an approximation to A, in order for the correct structure 
of the surface wave field to be obtained. The equation of A can be found as 

(a - k, cos 8) (cr cos 0 - k,) = T sin 8 (a2 - 2k,a  cos 8 + k$, (5.4) 
and shows that A cuts the a axis at k, cos 8 and at a = k, sec 8, going to infinity 
with asymptotes T = la1 cot 8. Therefore, a subsonic pole s = K will be captured 
in the deformation from C to A if Ic, sec 0 < K ,  and not otherwise, thus recovering 
(5.1). 

Admittedly, the effect under discussion here may be of no more than academic 
interest. For if K 9 k,, the resulting surface wave pressure field is attenuated so 
rapidly with distance x3 from the surface that the abrupt conical cut-off is prob- 
ably inconsequential, while in our particular problem the amplitude of the 
wave corresponding to the marginally subsonic pole s = k,9 (equation (3.6)) is 
O ( E )  so that the wave carries virtually no energy. A point to note in this connexion 
is that the energy carried by a subsonic surface wave decreases rapidly with 
increase of source height h from the surface, through the factor 

exp [ - 2h(tc2 - k6)3] 
which arises when the squared amplitude of (5.1) is taken. 
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We conclude with a brief discussion of some properties of the reflexion coeffi- 
cient which are of great practical significance. The work of $4  does not require 
the source to be closer than a wavelength to the membrane. If, however, we do 
have the common circumstance that hk, < 1, it follows that the direct field p, 
from the source will be cancelled by the reflected field in the direction 0 = O,,, 
where the reflexion coefficient R, = - 1. Thus far from observing a sharp maxi- 
mum in the radiated signal at great distances along the Mach cone, we should 
find instead a sharp drop to zero in the total signal, at  least to order R;l. This 
property holds also for emission in directions sufficiently close to the surface of 
the membrane, and the conclusion then is independent of the nature of the 
surface, provided only that it is homogeneous and has finite impedance (as all 
practical structures necessarily do have). When such a surface is excited by any 
source distribution within a wavelength of the surface, the total radiated field 
of the R-lexp [ik,R] type must vanish for those small values of 0 which make 
R, % - 1. A genuine radiative field cannot be propagated along any homo- 
geneous structure with finite impedance. The assumption commonly made in 
sonar design, for example, of infinite surface impedance, may be adequate for 
most values of 0, but should be replaced by the assumption that the surface is 
one of pressure-release for small values of 8. 'Small' here must not be taken 
too literally; a simple calculation shows that values of 0 a t  least as large as 30" 
are still small in this sense in some typical underwater contexts. All one has to 
do to see this is to examine the range of angles sufficiently close to the surface 
that R, = - 1. Perhaps the most systematic method is to note that R, is of the 
form (a  + ib) / (a  - ib),  and therefore that the power radiated in direction 0 is 
obtained from the free-field value simply by multiplying by 4a2/(a2 + bz). The 
variation of this factor with 0 shows most directly the way in which surface 
compliance reduces the power radiated in any direction. For the important case 
of a thin elastic plate with bending stiffness B, the functions a, b above are 
obtained from direct analogy with (5.3) as 

a = Bk; C O S ~  8 - ma2, 

b = pcoo cosec 0, 

with corresponding generalizations for more complicated equations describing 
the surface response. 

If further details of the field for small angles are required, the next term of 
the steepest descent series must be found, though in general there will be no need 
to modify that series to allow for the presence of a pole. It is a straightforward 
matter t o  prove that 

i 
x(1-2~V$#+$+O(R;2)} ,  (5.5) 

and this may be used in (4.3) to obtain a cumbersome expression of the form 
Rg2exp [ik,R,] for use near the membrane, or at great distances along the Mach 
cone. We might note that the electromagnetic analogue of this behaviour is 
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well known (e.g. Tyras 1969, p. 148). Horizontal radio propagation over a 
finitely-conducting earth suffers from the fact that the reflexion coefficient is 
equal to - 1 ,  but the acoustic parallel does not seem to be widely appreciated. 

The author is indebted to the referee for helpful criticism of this paper, This 
work was conducted as part of a programme sponsored by the Admiralty Under- 
water Weapons Establishment, Portland, and is published by permission of the 
Ministry of Defence (Navy). 
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